
Detring et al. Plant Methods          (2024) 20:189  
https://doi.org/10.1186/s13007-024-01315-y

METHODOLOGY Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Plant Methods

Quality assurance of hyperspectral imaging 
systems for neural network supported plant 
phenotyping
Justus Detring1*, Abel Barreto1, Anne‑Katrin Mahlein1 and Stefan Paulus1 

Abstract 

Background This research proposes an easy to apply quality assurance pipeline for hyperspectral imaging (HSI) 
systems used for plant phenotyping. Furthermore, a concept for the analysis of quality assured hyperspectral images 
to investigate plant disease progress is proposed. The quality assurance was applied to a handheld line scanning 
HSI‑system consisting of evaluating spatial and spectral quality parameters as well as the integrated illumination. 
To test the spatial accuracy at different working distances, the sine‑wave‑based spatial frequency response (s‑SFR) 
was analysed. The spectral accuracy was assessed by calculating the correlation of calibration‑material measurements 
between the HSI‑system and a non‑imaging spectrometer. Additionally, different illumination systems were evaluated 
by analysing the spectral response of sugar beet canopies. As a use case, time series HSI measurements of sugar beet 
plants infested with Cercospora leaf spot (CLS) were performed to estimate the disease severity using convolutional 
neural network (CNN) supported data analysis.

Results The measurements of the calibration material were highly correlated with those of the non‑imaging spec‑
trometer (r>0.99). The resolution limit was narrowly missed at each of the tested working distances. Slight sharp‑
ness differences within individual images could be detected. The use of the integrated LED illumination for HSI can 
cause a distortion of the spectral response at 677nm and 752nm. The performance for CLS diseased pixel detection 
of the established CNN was sufficient to estimate a reliable disease severity progression from quality assured hyper‑
spectral measurements with external illumination.

Conclusion The quality assurance pipeline was successfully applied to evaluate a handheld HSI‑system. The 
s‑SFR analysis is a valuable method for assessing the spatial accuracy of HSI‑systems. Comparing measurements 
between HSI‑systems and a non‑imaging spectrometer can provide reliable results on the spectral accuracy 
of the tested system. This research emphasizes the importance of evenly distributed diffuse illumination for HSI. 
Although the tested system showed shortcomings in image resolution, sharpness, and illumination, the high spectral 
accuracy of the tested HSI‑system, supported by external illumination, enabled the establishment of a neural net‑
work‑based concept to determine the severity and progression of CLS. The data driven quality assurance pipeline can 
be easily applied to any other HSI‑system to ensure high quality HSI.

Keywords Image resolution, Image sharpness, Spectral accuracy, Spatial accuracy, Illumination, Machine learning, 
Remote sensing, Plant diseases, Computer vision

Background
Hyperspectral imaging systems
Hyperspectral imaging (HSI) originated in 1986 when 
the first airborne hyperspectral spectrometer for mineral 
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mapping was launched by GER Corp. This was soon fol-
lowed by a more advanced HSI-systems from NASA/
JPL capable of collecting images in the range of 400 to 
2500nm [1]. From this on, the development of various 
spectral sensors increased. Today, HSI has a wide vari-
ety of applications ranging from medicine, food safety, 
environment, geology and agriculture [2–6]. The poten-
tial of hyperspectral sensors to remotely measure spec-
tral characteristics of objects is based on the fact that 
materials emit electromagnetic energy in signatures that 
correspond to their chemical composition and physical 
structure [7]. The emitted electromagnetic energy is con-
sidered as reflected light, which forms certain character-
istic spectral signatures depending on the sensed object 
and its state. The advantage of HSI-systems compared to 
non-imaging systems is the acquisition of spatial infor-
mation in the form of pixels. Each of these pixels contains 
the spectral information according to the spectral and 
spatial resolution of the HSI-system used.

In general, HSI-systems are categorized into four dif-
ferent types: push broom or rather line scanner, the fil-
ter-based systems, snapshot systems, and whisk broom 
systems [8]. One of the most established systems is the 
line scanner, which acquires images line by line. This 
approach implies that either the object or the system 
must be moved to enable a spatial measurement [9]. Cur-
rently available handheld line scanning systems are mir-
ror based to enable line scanning [10], allowing flexible 
application for different use cases [11–14].

HSI quality aspects for plant phenotyping
The introduction of high-end technologies such as HSI 
has greatly improved plant phenotyping. In general, plant 
phenotyping describes the response of a plant with its 
specific genetic background to various environmental 
factors and vice versa [15]. Especially in the field of plant 
disease detection, HSI has not only improved variety 
screening [16, 17], but also promoted precision agricul-
ture by supporting decision making for crop protection, 
yield cataloging and fertilization [18–20]. Fungal plant 
diseases have become highly investigated objects for HSI 
in phytopathology [18, 21, 22] because of their strong 
influence on yield and food quality. There are multiple 
studies investigating Cercospora leaf spot (CLS) with HSI 
on different scales [11, 21, 23]. CLS causes distinct leaf 
spots that can be accurately localized in the spatial infor-
mation of a hyperspectral image [11, 21].

In order to draw meaningful conclusions from the 
analysis of hyperspectral images, it is essential to increase 
the image quality as much as possible. The quality is 
characterised by several technical specifications, such 
as the spectral or the spatial resolution. Modern non-
imaging hyperspectral sensors can measure in a spectral 

range between 350-2500nm of the electromagnetic spec-
trum [6]. This covers the visible (VIS, 400-750nm), near 
infrared (NIR, 750-1000nm), shortwave (SWIR, 1000-
2500nm), and partially the ultraviolet (UV, 100-400nm) 
portion of the electromagnetic spectrum. The measure-
ment of the spectral range is divided by spectral wave-
bands. The proximity and width of these wavebands 
define the spectral resolution of a given system, which 
can be less than 1nm in high resolution non-imaging 
spectrometers. Nevertheless, the correlation between 
wavebands situated in close proximity enables the meas-
urement of systems with reduced spectral resolution, a 
common occurrence in the case of HSI-systems. [6]. To 
exploit the full sensitivity of a hyperspectral sensor and 
obtain the best possible image quality, it is important to 
consider additional factors before and during the meas-
urement, such as illumination, spatial resolution, and 
image sharpness. Since the sensor measures the reflected 
energy originated from the illumination, spectral range 
and intensity of the illumination source have a significant 
impact on the image and data quality. In-field illumina-
tion conditions with sunlight as the source of illumina-
tion can change within seconds. Therefore, it is essential 
to use a reference material within each measurement.

The standard illumination for laboratory HSI setups are 
currently halogen lamps [8, 24]. Halogen lamps have high 
energy output in the VIS and NIR spectra [24] which are 
spectral regions covered by most HSI-systems. Light-
emitting diodes (LEDs) have recently been introduced 
to HSI as a supplement to halogen lamps in the UV-blue 
region [25] and also as exclusive illumination [24, 26]. 
The strong light emission in the NIR spectral region of 
halogen lamps is beneficial for various plant phenotyp-
ing applications, since its considered as an important 
spectral region for plant spectroscopy. The light emis-
sion in the UV and VIS-blue region of halogen lamps 
may be insufficient depending on the application and 
HSI-system, where LEDs may be more convincing. In 
plant phenotyping, both illumination systems have to 
cope with the geometric structure of leaves and plants for 
HSI. Depending on the position of the illumination and 
its angle of incidence, the illumination may not be evenly 
distributed on the leaf or plant of interest. In addition, 
measurement angle and distance have a strong influence 
on data quality and the level of detail [12, 27]. This is one 
of the major challenges in HSI for plant phenotyping.

Spatial accuracy of hyperspectral images depend on 
the spatial resolution and image sharpness. Line scan-
ning spectral sensors have a fixed line length defined by 
a certain number of pixels, which determines the spa-
tial dimension of the y-axis of the image. The length 
of the x-axis is variable and depends on the movement 
distance of either the system or the object of interest. 
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To apply line scanning HSI in uncontrolled conditions, 
devices have been developed with a fixed spatial dimen-
sion where neither the HSI-system nor the object has to 
be moved for measuring. Handheld line scanning HSI-
systems with a fixed focal length, have limitations in 
varying the measurement distance when a sharp hyper-
spectral image is desired. The focal length combined 
with the sensor chip size defines the field of view. The 
focal ratio which is describing the light gathering abil-
ity is influencing the sharpness of an image in relation to 
the distance of the measured object as well. In this con-
text the plant geometry is once more challenging. Since 
plants are three dimensional structures not every latitude 
in the z-dimension can be measured with the maximum 
sharpness of an HSI-system. The sine-wave based spatial 
frequency response (s-SFR) is the international stand-
ard method for evaluating image resolution and sharp-
ness of digital cameras [28]. This method is based on the 
Nyquist-Shannon sampling theorem [29], which has not 
been applied to hyperspectral images before in literature. 
There is always a trade-off between latitude focus, depth 
of field, and region of interest in relation to the field of 
view and measuring distance. Handheld line scanning 
HSI-systems, in particular, face difficulties in meeting 
these requirements. Therefore, it is essential to validate 
every newly developed HSI-system for its use in plant 
phenotyping.

Machine learning in hyperspectral imaging driven plant 
phenotyping
The use of HSI in plant phenotyping produces complex 
and vast datasets that are challenging to handle. Machine 
learning, a subfield of artificial intelligence, allows for in-
depth analysis of HSI data. Classical regression models 
typically rely on one-dimensional parameters. For exam-
ple, if the model is designed to classify a pixel in an image 
based on its spectral characteristics, it only takes into 
account individual spectral values within the measured 
spectral range. More advanced machine learning meth-
ods, such as neural networks, can take the entire com-
plexity of spectral signatures of the pixel’s spectrum into 
consideration for classification [30]. In addition, neural 
networks are capable of recognizing the morphology of 
objects in images, expanding data analysis to include spa-
tial information. Neural networks are favourable for pat-
tern recognition, which enables precise understanding 
of HSI data and improves the extraction of plant traits. 
In particular, convolutional neural networks (CNN) are 
predestined for image analysis. CNN’s main architec-
tures consist of several convolutional layers in which 
the data is analyzed, causing a reduction of unnecessary 
parameters and creating a holistic understanding on the 
analyzed data points [31]. Liu et al. [30] designed a CNN 

architecture specifically for analyzing spectral data. The 
designed CNN architecture leads to a one-dimensional 
analysis of the whole spectrum, making it highly applica-
ble for multiclass pixel classification based on HSI data.

To accomplish high accuracys for such classifications 
high quality hyperspectral images are necessary. Fol-
lowing a pipeline is proposed (Fig. 1) to evaluate critical 
quality aspects of hyperspectral images such as spatial 
and spectral accuracy and illumination systems for HSI. 
Furthermore, a usecase is presented to analyse qual-
ity assured hyperspectral images supported by neu-
ral networks for phenotyping of plant disease severity 
progression.

Methods
Hyperspectral imaging system technical aspects
A handheld hyperspectral line scanning imaging system 
(Blackmobile, HAIP Solutions GmbH, Hannover, Ger-
many; Fig. 2; hereafter: HC) was used to proof and dem-
onstrate the proposed pipeline to ensure high quality HSI 
measurements for plant phenotyping.

The HC is equipped with a metal-oxide-semiconductor 
(CMOS) VNIR hyperspectral sensor and an ultra high 
resolution (4K) RGB sensor (Tab. 1). The built-in CMOS 
sensor is capable of measuring incident electromagnetic 
energy between 500-1000nm with a spectral resolution 
of 5nm, resulting in 100 spectral bands per measurement 
(z-dimension). The spatial resolution of the image out-
come consists of 640*480px (x,y-dimension). The expo-
sure time for the line scan procedure can be adjusted 
between 1000-5000µs per line. A gain function is pro-
vided to adjust the sensitivity of the sensor by increasing 
or decreasing the current supply of the sensor. The opti-
mal working distance of 50cm between the object and 
the lenses can be assigned by a laser system that calcu-
lates the distance between the object and the lenses by a 
trigonometric measurement. A novelty in handheld HSI-
systems is the integrated illumination consisting of 70 
broadband VIS/NIR high-power LEDs mounted on the 
back of the HC next to the sensor lenses (Fig. 2). Further 
technical details of the HC and the installed sensors are 
given in Table 1.

The HC is operated via a 7” full high-definition (HD) 
LED touch screen and two physical buttons for booting 
the system and triggering the measurement. Besides set-
ting options, such as exposure and gain, the user inter-
face includes processing functions for the acquired data. 
By measuring an image-filling reference material, this 
measurement can be set as a “global reference” for pixel-
by-pixel normalizing of the hyperspectral image. If the 
reference material is placed within the measurement of 
an object of interest, a round area of interest marker can 
be set at that location and adjustable in size to match the 
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Fig. 1 Quality assurance pipeline of hyperspectral imaging (HSI) systems with a convolutional neural network (CNN) supported data analysis 
concept. In Fig. 1 A an evaluation of three crucial parameters is presented. The spatial accuracy was tested by analyzing the sine‑wave based 
spatial frequency response (s‑SFR). To investigate the artificial illumination, spectral responses of plant canopy’s were compared. The spectral 
accuracy of the HSI‑system is validated by compering measurements of a calibration material with a spectrometer. After evaluating the parameters 
and adapting the measurements according to the results, the HSI‑system is used to measure the disease progression of Cercospora leaf spot (CLS) 
infected sugar beet plants. In Fig 1 B the concept for CNN supported HSI data analysis is presented. In the first step common spectral and image 
preprocessing steps such as normalization and smoothing are conducted. For supervised machine learning, the training data set has to be 
humanly annotated to define certain classes of interest. After training the model with humanly annotated data, the model can predict the classes 
for the whole dataset, which can be validated by comparing the results with humanly annotated data which has been excluded from the training 
process. To enhance the models’ performance, image postprocessing steps such as erosion and closing have been applied. After postprocessing 
the CLS disease severity has been derived from the model output

Fig. 2 Blackmobile front and back view. The frontside shows a 7” LED touchscreen that displays the user interface running the hypercube view 
widget. The backside shows the broadband VIS/NIR LED array, the lenses of the hyperspectral and RGB camera, and the laser system for vertical 
alignment
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size of the reference material. By selecting this marker 
as the “global reference,” an average spectrum of the 
adjusted area of the marker is calculated and set as the 
global reference value used for normalizing of each pixel 
in the selected hyperspectral image. Both normalization 
methods calculate the reflectance following the formula.

reflectance = HSI−sensordarkcurrent
referenceHSI−sensordarkcurrent

Due to technical variability such as heat or voltage, the 
noise produced by hyperspectral sensors varies with each 
measurement. To eliminate these differences during the 
normalization process, a dark current is recorded with 
each measurement and subtracted from the HSI, respec-
tively. The normalized hyperspectral image can be exam-
ined in the widget, and multiple markers of interest can 
be set in the widget to display the average spectrum of 
the set area. The acquired data is saved as an ENVI for-
matted hyperspectral cube and the RGB image as a JPG 
image, which is automatically recorded before the spec-
tral measurement starts, if enabled. Further technical 
details of the camera and its operating software are given 
in Table 2.

Measuring setup
The framework of the measurement chamber is made 
of aluminum profiles and has a dimension of 1.5*1.5*2m 
(L*W*H). Light interference in the measurement cham-
ber was prevented by blackening the walls with poly-
urethane-coated black nylon fabric (Blackout Fabric, 
Thorlabs Inc., Newton, United States), the floor was cov-
ered with a matte black lacquered wooden panel. The 
ceiling was left open to ensure adequate ventilation and 
to prevent heat stress to the plants (Fig. 3).

The external halogen illumination consisted of four 
70watt voltage stabilized quartz tungsten halogen lamps 

Table 1 HAIP Blackmobile technical details sensors

Parameter HSI RGB

Sensor CMOS CMOS

Sensor size 5568*3132µm 7680*4320µm

Sensor resolution 2 Megapixel 8 Megapixel

Pixel size 2.9*2.9µm 2.0*2.0µm

Focal ratio 1.8 1.8

Focal length 12mm 12mm

Spectral range 500‑1000nm NA

Spectral resolution 5nm NA

Spectral bands 100 NA

Exposure 1000‑5000µs Auto‑Exposure/0.1‑33.3s

Gain (analog) 1‑15.5 (Multiplier) 1‑15.5 (Multiplier)

Image resolution 640*480px 3840*2160px

Data depth 10bit 8bit

Peak signal‑to‑noise ratio 40.8dB 39dB

Working distance 45‑55cm 45‑55cm

FOV at 50cm distance 22*16.5cm 33*18cm

Data format ENVI JPG

Table 2 HAIP Blackmobile technical details of the operating software and system hardware

Parameter Value

User interface HAIP Blackmobile Software

Operation System L4T 32.5 ‑ Ubuntu 18.04 ‑ Linux kernel 4.9

Embedded Computer NVIDIA� Jetson Nano
TM

CPU Quad‑Core ARM� Cortex� ‑ A57 MP core

GPU NVIDIA Maxwell
TM , 128 NVIDIA CUDA�

RAM 4 GB 64‑bit LPDDR4

Storage integrated 16GB eMMC 5.1‑flash storage

Storage external 256GB SD

Battery Li‑Ion 14.4 V

Operational time 100 measurements

Display and operating unit 7” LED touch screen (full HD) and 2 buttons

Serial Connection and power socket USB type‑c

WIFI 2.4 GHz IEEE 802.11

Supply voltage 20VDC

Size (L*W*H) 250*165*70mm

Weight 1.5kg

Operational temperature 10− 30
◦C

Integrated illumination Broadband VIS/NIR LED array

LED quantity 70
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(Illuminator Lamp, Malvern Instruments, Malvern, 
United Kingdom). To ensure evenly distributed illumi-
nation, round diffusing screens were fixed to the lamps 
with metal wires at a distance of 2cm. (nylon silk with 
an approximate light reduction of 1.0 f-stop). The lamps 
were mounted on 137cm tripods at an angle of about 40◦ . 
The tripods were adjusted to a height of 108cm above 
the ground and placed in a rectangle around the centre 
in a measurement chamber. The HC was mounted on an 
additional tripod. An barium sulfide plate with a dimen-
sion of 43*43cm (Specim Spectral Imaging Ltd., Oulu, 
Finland) was used as an image filling white reference 
material for all measurements.

Plant material
Two sugar beet varieties were chosen for the experi-
ments. BTS 8750 (Betaseed GmbH, Frankfurt, Germany) 
for investigating the quality of the hyperspectral illumi-
nation, and Vasco (SESVanderHave, Tienen, Blegium) 
for phenotyping plant disease dynamics. The seeds were 
sown 1cm deep in polypropylene pots filled with Fruh-
storfer soil type P 25 (HAWITA Gruppe GmbH, Vechta, 
Germany). After seven days, 15 germinated seedlings 
of the variety BTS 8750 were individually transplanted 
into 1l round polypropylene pots filled with fertilized 
sandy topsoil (Gustav Lehmann Mörtel- u. Kieswerke 
GmbH, Burgdorf, Germany). The sugar beet plants 
were then cultivated for 66 days (14:10h light/dark pho-
toperiod, 25.5±5.5◦C , 55.4±18% relative humidity and 
about 225µmol/[sm] full spectrum light) in the green-
house until they reached BBCH-Code 19 [32]. During 

cultivation, the plants were watered daily and fertilized 
every three weeks with 50ml of a 1:40 liquid fertilizer 
(liquid universal fertilizer, EDEKA, Hamburg, Germany) 
tab water mixture.

For the usecase data assessment 14 sugar beet plants 
of the variety Vasco were split into two variants: inocu-
lated and non-inoculated. The inoculated variant was 
treated with liquid Cercospora beticola spore suspen-
sion produced from the strain 145 (BASF SE, Ludwig-
shafen, Germany) by spraying 7ml of the suspension with 
a concentration of ca. 30,000 spore per millilitre equally 
distributed on abaxial and adaxial side of the sugar beet 
leaves twice, in a time spawn of one hour. Afterwards the 
plants were covered with foil and the temperature in the 
greenhouse was increased to a minimum of 28◦C for six 
days. After six days the foil was released and the tem-
perature was decreased. The sugar beets were then cul-
tivated for the time of the data collection at 26.6±6.1◦C , 
55.2±18.8% relative humidity and ca. 225µmol/[sm] of 
full spectrum light.

Measurements
Spatial quality assessment
The spatial resolution of the HC was tested using the 
international standard method called sine-wave based 
spatial frequency response (s-SFR) for measuring reso-
lution and image sharpness of digital cameras [28]. 
Therefore, a sinusoidal Siemens star SFR chart with 144 
cycles (ISO 12233:2023) [33] was measured with the HC 
at different working distances. Before measuring the 
SFR chart, the white reference was measured with the 
external illumination at a distance of 50cm and with an 
exposure time of 1000µs and a gain of 12. To replicate 
the referencing scheme of a plant measurement, the ref-
erencing measurement was done only once at the opti-
mal working distance. The varying working distances are 
resembling the z-axis latitude of a plant canopy. The dis-
tance of the s-SFR chart to the lens was varied ± 5, 7.5 
and 10cm from the optimal working distance of 50cm for 
the different measurements to simulate a plant canopy 
height of 20cm. The exposure time for the s-SFR chart 
measurements was set to 5000µs to increase the sensitiv-
ity of the HSI-system.

Spectral quality assessment
To validate the spectral accuracy of the HC, a calibra-
tion material (ColorChecker Classic, Calibrite LLC, 
Wilmington, USA) was measured with the same setup 
as described in section 2.2. The calibration material and 
the white reference was measured at the optimal working 
distance of 50cm with the external halogen illumination. 
In order to compare measurements with a high resolu-
tion non-imaging spectrometer (ASD Fieldspec Hi-Res, 

Fig. 3 Measurement setup for hyperspectral imaging. A: HC, B: 
Tripod HC (height: about 80cm), C: External illumination, D: Tripod 
illumination (height: 108cm, angle: 40◦), E: Diffusing screen, F: Blacked 
out measurement chamber (dimensions: 1.5*1.5*2m (L*W*H))
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Malvern Instruments, Malvern, United Kingdom, soft-
ware: RSTM

3
 ) the calibration material and the white ref-

erence were measured with the same exposure time 
(5000µs ) and gain (3.1) to enable comparison between 
the spectrometer and the HC. Prior to measurements, 
the spectrometer was warmed up for 30min and a con-
tact probe was mounted. Reference measurements were 
made by placing the contact probe on the same white ref-
erence used for the HSI reference measurement. For the 
measurements of the calibration material with the spec-
trometer, the contact probe was pointed into the tiles of 
the calibration material and 10 repetitions of each tile 
were assessed.

Illumination quality assessment
The variability of the integrated high-power LED array of 
the HC was investigated for plant phenotyping routines 
and compared to external halogen illumination. For this 
purpose, sugar beet plants were measured with the HC 
illuminated by the integrated LED array and external 
halogen lamps respectively. Therefore, five sugar beet 
plants were placed in the center of the rectangle formed 
by the halogen illumination tripods in the measuring 
setup (Fig. 3) on the same position for individual meas-
urements. The HC was leveled at a distance of 50cm to 
the approximate vertical center of the plant canopy. The 
distance between the halogen lamps and the canopy was 
about 75cm. Before measuring the plant material, the 
white reference was measured with the integrated and 
external illumination at a distance of 50cm and with an 
exposure of 1000µs and a gain of 12. The exposure time 
for the measurements was set to 5000µs . Each plant was 
measured with the external and integrated illumination 
in exactly the same position, respectively.

Subsequently, the selected plants were measured with 
the non imaging spectrometer. Five leaves of each plant 
were randomly selected and the adaxial side of the leaves 
was measured in the middle next to the leaf vein with the 
leaf clip attachment of the spectrometers contact probe.

Time series measurement of disease dynamics
The optimal working distance of 50cm between the 
object and the lens was adjusted to the vertical center of 
the sugar beet canopy. The external halogen illumination 
setup was adjusted to account for the different heights 
of the sugar beet pots, resulting in different sugar beet 
canopy distance. The height of the halogen lamps was 
adjusted to 79cm, which resulted in a distance of approxi-
mately 60cm between the lamps and the sugar beet 
canopy and an angle of approximately 45◦ . Plants were 
measured with the HC one day before inoculation and 
7, 11, 14, 21, 24 and 31 days after inoculation (dai). As 
reference data, disease severity was visually assessed as a 

percentage of infected leaf area via human expert rating 
[34].

Data analysis
Spatial resolution
The acquired hyperspectral images for spatial quality 
assessment, considered as raw data, were processed in R 
(version: 4.3.1) [35] and RStudio (version: 2023.12.0+369, 
Posit PBC, 2023) using the package “hsdar” (version 
1.0.4) [36]. First, the hyperspectral images of the plant 
material were normalized pixel by pixel with the corre-
sponding illumination reference measurement using the 
following formula.
reflectance = HSI−sensordarkcurrent

referenceHSI−sensordarkcurrent
×

exposure reference
exposure data

Then RGB images of the normalized hyperspectral 
images were visualized (png, version: 0.1-8) [37]. The 
wavelengths chosen for RGB visualisation were 525nm, 
550nm and 600nm. The RGB images of the different 
measuring distances were analyzed in the MathWorks 
tool IE-Resolution (Single Star Version, Image Engineer-
ing, Frechen, Germany) [38] to calculate the limiting 
resolution. The tool divides the sinusoidally modulated 
starburst pattern into 8 segments and calculates the 
Nyquist-frequency by a modulation transfer function 
(MTF) for each segment. In addition, the sum of the 
modulation for each distance and each segment was cal-
culated to compare the sharpness of each segment within 
a working distance. The standard deviation of the mod-
ulation between segments was also calculated for each 
working distance.

Spectral accuracy
The hyperspectral images of the color calibration mate-
rial measurements were normalized as described in sec-
tion  2.5.1. Arrays of size 60*60px were extracted from 
different calibration material tiles of the hyperspectral 
images. From each array an average spectrum of the 10 
measurement repetitions was calculated in R (asdreader, 
version: 0.1-3) [39]. For further analysis, only spectral 
bands measured by both sensors, the spectrometer (with 
a spectral resolution of 1nm) and the HC (spectral reso-
lution: 2nm) were considered. A Pearson correlation was 
calculated between the measurements of each tile from 
the HC and the spectrometer using the “cor” function 
of the “stats” package (version: 4.3.1) [35]. Differences 
between the measurements from the HC and the spec-
trometer in reflectance of the considered spectral bands 
were calculated for each tile by subtracting the reference 
values of the spectrometer data from the HC data. For 
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graphical presentation, of the results of this research the 
“ggplot2” package (version: 3.4.4) [40] was used.

Illumination comparison
The hyperspectral images of the illumination sys-
tem comparison were normalized as described in sec-
tion 2.5.1. The sugar beet canopies of the normalized data 
were segmented by creating two binary masks with the 
optimized soil adjusted vegetation index (OSAVI) and 
the difference vegetation index (DVI) [41, 42] with the 
following formulas.
OSAVI = 1.16×

800nm−670nm
800nm+670m+0.16

 ; 
DVI = 800nm− 680nm

Both masks were merged to increase the segmentation 
performance using the “OR” operator [43]. After merg-
ing the masks, an image erosion was performed (mmand, 
version: 1.6.3) [44] to eliminate false segmented indi-
vidual pixels. In addition, an average spectrum and the 
standard deviation of the average spectrum were calcu-
lated for each merged mask of the sugar beet canopy. Ten 
reference measurement repetitions of the non-imaging 
spectrometer per leaf, were averaged and the arithmetic 
mean of five leaf measurements per plant was calculated 
to estimate a representative spectrum for each of the five 
sugar beet canopies.

Image preprocessing and CNN training for CLS disease 
severity estimation
Plant masks were plotted for human annotation of the 
dataset which had been separated in training and test 
dataset for machine learning. After normalization as 
described in section 2.5.1, the first 2 spectral bands have 
been deleted due to sensor noise for further analysis. The 
Savitz-Golay smoothing filter [45] was applied to the 
hyperspectral images using the R package “gsignal” [46] 
(filterorder = 3, filterlength = 5). The smoothing filter 
was applied to reduce noise in the spectral data and to 
compute the first and second derivatives of the smoothed 
hyperspectral images. Pseudocolor images of the OSAVI 
index, as described in Section 2.5.3, were plotted with the 
smoothed, normalized data to improve the visibility of 
borders between different objects which supports human 
class annotation for machine learning. Three classes 
were defined for annotation of the pseudocolor images: 
“background”, “healthy” plant tissue, and CLS “diseased” 
plant tissue. The pseudocolor images of 2 inoculated and 
2 non-inoculated sugar beet plants of each measurement 
date were randomly selected and the pixels of the images 
were annotated to the three defined classes using the 

software GIMP (version: 2.10.36, The GIMP Team). This 
resulted in the establishment of 3 separate masks of the 
defined classes. The training and test data sets were sepa-
rated by measuring time points: 2 of the 8 time points (14 
and 24 dai) were kept for the test dataset and the other 
6 (0, 7, 11, 18, 21, 24 and 31 dai) for the training data-
set. This division was made to establish two completely 
unknown disease progression states (early and late) in the 
time series for the CNN to test its performance. Which 
resulted in assigning 8 hyperspectral images to the test 
data and 24 hyperspectral images to the training dataset. 
The masks of the training dataset were used to generate 
matrices from the arrays of normalized and smoothed 
hyperspectral images by summarizing the reflectance 
values of the smoothed hypercube, the first and second 
derivatives for each pixel. The matrices of the train-
ing data set were then accumulated and outliers were 
removed (Rlof, version: 1.1.3) [47] by deleting the top 1 % 
of the maximum and minimum values of each class. After 
removing the outliers, the three classes were balanced in 
terms of their total number of pixels to prevent the model 
from becoming biased towards one class. Since the total 
number of pixels of the diseased class is the lowest, 2 
times the total number of pixels of the diseased class was 
set as the downsampling size for the other two classes.

The preprocessed training data set was then used to 
train a CNN specifically designed to analyze spectral data 
[30]. The implemented CNN focuses on analyzing and 
classifying the spectral data of each pixel. The input data 
were individual pixels with the corresponding spectral 
values combined from the smoothed spectrum and its 
first and second derivatives. The architecture of the CNN 
was adapted as described in [48] (retrieved: 2023.11.27). 
In addition, the batch size was set to 1024 pixels per 
epoch and the total number of epochs was set to 50. For 
the training and testing process, the smoothed hyper-
cubes and the first and second derivatives were summa-
rized for each pixel. 20% of the training data was retained 
to validate the training process. The training process 
was focused on the disease and background classes to 
better discriminate these classes the “classweight” func-
tion of the R package “keras” (version: 2.13.0) [49] was 
used. Furthermore, the adam optimizer with a learn-
ing rate of 0.001 was used for the training process. The 
trained model was then used to predict the affiliation of 
the pixels to three defined classes of the entire dataset 
which was centralized and scaled by the coefficient cal-
culated in the training process. The trained model then 
predicted the affiliation of each pixel to the three defined 
classes from the summarized spectral values. With the 
predicted affiliation of each pixel, pseudocolor masks of 
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each hyperspectral images were generated. To improve 
the performance of the CNN, post-processing steps were 
performed. First, the masks of the diseased and healthy 
classes were merged, then an image closing and erosion 
(mmand, version: 1.6.3) [44] was conducted to assign the 
mixed edge pixels to the class background and to assign 
single misaligned diseased pixels to the class “healthy”. A 
confusion matrix for the metrics precision, recall, speci-
ficity and F1 was calculated to analyze the performance 
of the disease severity estimation pipeline by comparing 
the predicted and post processed pixel class affiliation 
of the test data set compared to the human annotated 
masks.

With the final predicted and post-processed masks, the 
disease severity of each plant and each time point was 
calculated using the following formula which enumerates 
the leaf area affected by the disease [50].
disease severity = pixel count: diseased

pixel count: healthy+pixel count: diseased × 100
In addition, the disease severity values of each time 

point from either the calculated CNN results or the visual 
assessment were checked for outliers by Dixon’s extreme 
value analysis [51] with a significance level of 5 % , which 
was performed in R using the outliers package (version: 
0.15) [52]. A single outlier was detected in the CNN 
derived disease severity data set at 18 days after inocu-
lation and removed for further analysis. To obtain com-
parable hyperspectral images, all plants were measured 
from the same perspective. Since plants grow differently 
even when grown under the same conditions, important 
parts of the plant may be missed in the measurements, 
leading to outlying measurement results. In addition, a 
Wilcoxon signed rank test [53] was performed in R with 
the “coin” package (version: 1.4-3) [54] to test for statisti-
cally significant differences between the disease severity 
of inoculated and non-inoculated variants for each meas-
urement time point after 14 days post inoculation, which 
was the starting point for CLS symptom development. 
The mean disease severity for each variant at each time 
point and the standard deviation were calculated.

Results
Spatial resolution and image sharpness
The Nyquist frequency of the hyperspectral images 
measured at the different working distances with the HC 
between 40-60cm (Table  3) slightly increased with nar-
row working distances and slightly decreases with further 
working distances. The Nyquist frequency of the image 
recorded by the RGB sensor (1080) was exactly half the 
sampling rate of the RGB sensor (2160). The standard 

deviation between the segments of the HC increased 
as the working distance decreased. Furthermore, the 
HC presented differences between the segments by the 
summed modulation within a working distance, which 
allows to distinguish between sharpness of the differ-
ent segments. Images measured in narrow and optimal 

Table 3 Image sharpness of the HC at working distances 
between 40‑60cm. SD shows the standard deviation between 
the summed modulation transfer function results for each 
segment

Distance[cm] Nyquist 
frequency

Best segment 
( 
∑

MTF)
Worst 
segment ( 

∑

MTF)

SD

40 239.5 5 (154.8) 7 (31.2) 43.4

42.5 239.5 5 (122.0) 7 (36.0) 28.3

45 238.5 1 (103.9) 7 (43.0) 19.7

50 238.5 5 (63.5) 7 (29.7) 12.5

55 237.5 8 (36.4) 2 (12.7) 9.0

57.5 235.5 8 (30.1) 2 (8.2) 8.3

60 228 8 (23.4) 2 (5.0) 7.5

50 (4K) 1080 3 (297.5) 5 (237.8) 19.4

Fig. 4 Spectral accuracy results. Spectral response of 8 tiles 
of the calibration material measured by the HC and the spectrometer 
are shown (A). The colors correspond to the colors of the measured 
calibration material tiles. “r” values present Pearson correlation 
coefficients between measurements from the spectrometer 
(reference) and the HC of the corresponding tiles. In addition, 
the differences in reflectance between the HC measurements 
and the spectrometer measurements are presented (B)
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working distances constitute mostly segment 5 as the 
sharpest and segment 7 as the most blurred segment. The 
results of the increased working distance identified seg-
ment 8 as the sharpest and segment 2 as the most blurred 
segment.

Spectral accuracy of the hyperspectral camera
The displayed color calibration material measurements 
presented strong similarities between the HC and the ref-
erence measurements of each calibration material color 
tile with an r >0.99 for all the measured color tiles of the 
calibration material. In addition, the differences between 
the HC and spectrometer measurements were all less 
than 0.1 reflectance between 512-1000nm (Fig. 4B).

Illumination system quality
Differences in the arithmetic mean of reflectance values 
were identified around 677nm in the VIS and around 
752nm in the NIR. (Fig.  5A). The spectral curve of the 
spectrometer reference measurement corresponds to 
the curve of the halogen-illuminated measurements. 
However, the reference curve has an increased offset of 
approximately 30% compared to the halogen-illuminated 
curve. The LED illumination caused high standard devia-
tion at 525nm and 1000nm, which reaches more than 0.1 
reflectance at approx. 720nm (Fig. 5B). The spectrometer 

measurements constantly had the lowest standard devia-
tion over the entire measured spectrum. Furthermore, 
the LED illumination produces the highest spatial reflec-
tance variance over the sugar beet canopy in all three 
spectral bands (Fig. 5C) compared to the halogen illumi-
nation. In particular, the spectral band at 752nm of the 
LED illumination hyperspectral images includes pixels 
located at the highest leaf base with reflectance values 
that are off scale and therefore displayed in white.

Cercospora leaf spot disease severity prediction
The CNN and the human expert detected the first symp-
toms of CLS on the inoculated plants 18 days after 
inoculation (Fig.  6A). During the following seven days, 
the mean disease severity increased by 4.5% according 
to the expert rating and 0.57% according to the CNN. 
At the final day of measurement, the disease severity 
was 8.57% for the expert rating and 3.49% for the CNN 
pipeline. The disease severity rating by the expert for 
the non-inoculated variant was zero percent through-
out the observation period. The CNN pipeline showed a 
low false positive rate for disease severity results of the 
non-inoculated variant, with a maximum of 0.081% . The 
standard deviation increased for both assessment meth-
ods as the CLS infection progresses. The inoculated and 
non-inoculated variants showed statistically significant 

Fig. 5 Comparison of illumination systems by sugar beet canopy spectral responses. The arithmetic mean of the five averaged canopy reflections 
between 500 and 1000nm of the two different illumination systems and the spectrometer measurement is shown (A). In addition, the arithmetic 
mean of the standard deviations of the reflectance of the averaged canopy masks and the averaged spectrometer reference measurements 
is displayed (B). Furthermore, the variance of the measured reflectance over a plant canopy of the spectral bands 552nm, 677nm and 752nm 
is presented (C)
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differences for both rating methods at 21, 24, and 31 days 
after inoculation. The CNN pipeline pixel affiliations of 
one repetition of the inoculated class to the RGB images 
of the same plant at the respective time points are com-
pared (Fig. 6B). The RGB and pseudo color images of the 
CNN pipeline display comparable infection patterns at all 
time points upon visual analysis.

The CNN has a precision of over 98% for the back-
ground and healthy classes. For the diseased class, the 
precision is approximately 62% (Table 4). The false posi-
tive rate of pixel affiliations in falsely predicted classes is 
consistently below 5 % for every class combination except 
when healthy is predicted but truly diseased, which has 
a false negative rate of 33% (Table  A1). The CNN con-
sistently achieves over 98% in classifying healthy and 
background pixels in terms of recall, specificity, and F1 
score. In the classification of diseased pixels, the specific-
ity is above 99% and the precision, recall and F1 score are 
above 60%.

Discussion
Hyperspectral imaging quality assurance for plant 
phenotyping
Accurate imaging of three-dimensional (3D) objects such 
as plants is challenging, especially in the field of HSI. 
Every image has the phenomenon of edge pixels, which 
contain a mixed spectral signature of the overlapping 
objects. In the case of plant phenotyping, for example, 
this can occur at the boundary between leaves and back-
ground or healthy leaf tissue and diseased leaf tissue. In 
conclusion, high image resolution resulting in a small 
ground sampling distance (GSD) is advantageous for 
segmenting objects in a hyperspectral image. However, 
this requires an adequate image sharpness. The Nyquist 
frequency takes the image sharpness into account and 
describes the resolution limit of an image and therefore 
also the resolution limit of an imaging system [28]. Apart 
from the technical limitation of the system, the GSD can 
only be influenced by the measuring altitude. The image 
sharpness, on the other hand, is mainly influenced by 
the focal ratio of the camera, which is fixed for the HC 
and determines an optimal working distance of 50cm, 
resulting in a GSD of 0.2mm [55]. Even though an opti-
mal working distance has been determined, changing the 
distance may be necessary in certain scenarios, such as in 
including the entire plant in the hyperspectral image or 
in reducing the GSD to measure small objects.

Fig. 6 Disease severity results from CNN and expert scoring. Bars show disease severity from the CNN pipeline and dotted lines show the expert 
assessment. Error bars show ± standard deviation and stars show statistically significant difference between variants at a given time point 
at a significance level of p<0.05 (A). RGB images from the 4K sensor of the HC and colored masks from the CNN pipeline of the three classes 
background (black), healthy (green), disease (red) at three selected measurement times (early, intermediate, late) of a replicate of the inoculated 
variant are shown (B)

Table 4 CNN performance matrix of the pixel wise classification 
from the test dataset

Precision Recall Specificity F1

Background 0.98 0.98 0.98 0.98

Diseased 0.62 0.60 0.99 0.61

Healthy 0.98 0.98 0.98 0.99
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The critical sample value of half of the maximum image 
pixel height (240) was narrowly missed by the HC at any 
working distance, resulting in a small aliasing and loss 
of information [56]. By changing the working distance ±
10cm the GSD changed ±0.04mm which can be the rea-
son for the slight variation in the Nyquist frequency. The 
technical aspects of the HC concerning the low focal 
ratio would not assume any remarkable changes in the 
image resolution between at least ±5cm from the optimal 
working distance which is corresponding with the image 
resolution test results. Low focal ratios are associated 
with a wide image focus which is beneficial for measur-
ing 3 dimensional objects. The differences in sharpness 
between the segments within a working distance could 
have been caused by faulty technical components of the 
HC. Defects related to the hardware of the sensor chip 
would have resulted in a locally uniform degradation of 
quality at any working distance. Since the blur of the seg-
ments varies over the working distances, defects in the 
installed lens may have caused this problem. Point defects 
on the lens can occur during the manufacturing process, 
such as bubbles and uneven coating, and during the man-
ufacturing and assembly of the camera [57]. The position 
of the sinusoidal Siemens star chart under the lens of the 
HC was automatically corrected by the MathWorks tool 
IE-Resolution. Shifting the angle between the chart and 
the lens when the working distance was adjusted might 
have caused the shifting of the weak spot concerning 
the sharpness. In addition to the technical aspects of the 
camera, the resulting image resolution and sharpness 
is affected by the signal processing within the system. 
The actual sensor resolution of the HC is 1920*1080px. 
The stored hyperspectral image only has a resolution of 
640*480px, which means that spatial binning is applied to 
probably increase the spectral signal-to-noise ratio [58].

In summary, the international standard method for 
the evaluation of image sharpness of digital cameras [28] 
can be considered to be applicable to HSI-systems. Since 
the method evaluates contrast, simple black and white 
images can also be evaluated, allowing the analysis and 
comparison of the image sharpness of each spectral band 
measured by an HSI-system, if needed.

To investigate the spectral accuracy of the HC, the 
spectral measurements of a calibration material for digi-
tal cameras were compared to the spectral measurements 
of the same calibration material of a high spectral reso-
lution non-imaging spectrometer. The average Pearson 
correlation between the measurements of the 8 tiles of 
the calibration material resulted in a correlation of about 
99.8% , certifying the installed spectral sensor in the HC 

a high accuracy. The reflectance differences of all meas-
ured tiles between 512-1000nm are below 0.1, which 
corresponds to a high average correlation. However, 
between 500-512nm, the differences increase due to the 
low signal-to-noise ratio of the first measured bands of 
the HC. This is a common problem in spectroscopy, often 
resulting in the elimination of the first noisy spectral 
bands for analysis. The low irradiance of the halogen illu-
mination in the blue light region commonly used for HSI 
exacerbates the effect, as shown by the distortion of the 
spectrum in the affected spectral region [25]. The slight 
spectral shift between the HC and the reference meas-
urements which occurs for most of curves may be caused 
by technical differences in the spectral measurements or 
by different processing of the measured signals. In gen-
eral, comparing the spectral measurements of a calibra-
tion material’s spectral response with those of a reliable 
spectrometer is an easy-to-apply method for evaluating 
the accuracy of an HSI-system.

Illumination for hyperspectral imaging
The accuracy of HSI is heavily influenced by the light 
conditions during measurements [25, 59]. Stable and 
sufficient illumination is crucial for generating high-
quality data in laboratory setups under controlled con-
ditions. In-field measurements are the most reliable 
source for extracting plant traits because environmental 
influences are considered. Generating high-quality and 
accurate hyperspectral images in the field is challenging 
due to unpredictable and unstable natural light condi-
tions. To stabilize the light conditions for hyperspectral 
measurements, the tested HC supports illumination 
by an integrated light source. The integrated LED light 
of the HC was evaluated by comparing measurements 
of sugar beet plants in controlled conditions with com-
mon halogen-illuminated and non-imaging spectrometer 
measurements.

When comparing the courses of the spectral curves, 
it is noticeable that the spectrometer and halogen-illu-
minated measurements exhibit similar trends. However, 
there is a significant shift between these curves, which 
can be attributed to the 3D structure of the plant. The 
spectrometer measurements were conducted using a 
plant probe with a leaf clip attachment that flattened the 
leaf for the measurement, resulting in a two-dimensional 
equally illuminated measurement. Creating equally dis-
tributed illumination on a 3D structure is challenging. 
Additionally, combining this with a two-dimensional nor-
malization for hyperspectral measurements, which is still 
the state of the art in the field of plant phenotyping [12, 
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14, 60, 61], shifting of the spectral response can occur. 
Research has been conducted to correct the calibration 
of HSI by taking into account the plant geometry [12] 
and shadowing effects [62]. Though, both approaches 
do not take into consideration the light distribution of 
the illumination source in the set up. Another approach 
to correct this issue would be to measure the calibration 
material at different altitudes of the z-axis and corre-
spond this to the depths of the hyperspectral image in the 
normalization process. This can already be achieved with 
tools like Depth Anything [63].

Between 650-775nm, the spectral curves of halogen 
and LED illumination significantly diverge, exhibiting 
two abnormal peaks in the LED illumination measure-
ments at approximately 677nm and 752nm. Additionally, 
certain hotspots exceeding a reflectance value of 1.0 are 
visible in the reflectance heat maps of LED-illuminated 
hyperspectral images. These abnormal spectral responses 
may have resulted from mirroring effects caused by the 
non-diffuse integrated LED light which incidents at a 90◦ 
angle. To prevent mirroring effects, the halogen illumina-
tion was mounted at an angle of approximately 45◦ to the 
plant, and diffusing screens were attached. The lamber-
tian property of leaves is generally dependent on surface 
characteristics, particularly the amount of epicuticular 
wax, which can enhance mirroring effects [64]. In prin-
ciple, LEDs as an illumination source for HSI imply a lot 
of advantages compared to halogen illumination such as 
cost effectiveness, longer lifetime, less heat emission and 
increased irradiance in the blue light region [24, 25, 65]. 
However, the comparison of illumination sources in this 
research highlights the importance of evenly distributed 
diffuse illumination for HSI.

Proof of concept: Neural network supported CLS disease 
severity estimation
In addition to the HSI-system quality evaluation pipe-
line, this research proposes a concept for a CNN mul-
ticlass classification of quality assured hyperspectral 
images in the context of phytopathology. A CNN specifi-
cally designed for the analysis of spectral data [30] was 
trained for the detection of CLS diseased pixels. The 
trained CNN was used to estimate the disease severity of 
CLS-infected plants in a time series and compared with 
visual expert assessments. The CNN underestimated the 
disease severity over the whole time series compared to 
the expert rating. However, the use of human expert rat-
ings as reference data has been widely discussed in the 
literature for the last 100 years [66]. To establish a true 
image-based reference dataset, the entire dataset must 

be classified by human annotation. With the increas-
ing amount of data in high throughput plant phenotyp-
ing, this approach is impractical. The performance of 
the trained CNN for multiclass classification shows high 
precision, recall, specificity and F1 for the healthy and 
background classes, which means the CNN is very accu-
rate in segmenting the vegetation from the background 
in a hyperspectral image. In addition, the diseased class 
has a high specificity, which describes the relationship 
between the true negative and all negative pixels of this 
class. Precision, recall and F1 for the diseased class are 
above 0.6, which is a positive result for disease classifi-
cation. The presented CNN performance for the clas-
sification of the diseased class explains the possible 
underestimation of the CLS disease severity. The early 
symptoms of CLS are small reddish-brown lesions with 
a white to grayish center in which black pseudostroma 
are formed. As the infection progresses, the lesions grow 
and coalesce, which can lead to a complete collapse of the 
leaf [21]. Detecting early symptoms using a pixel-by-pixel 
approach is difficult as a single lesion at this stage may 
contain more edge pixels with mixed spectral responses 
than clear central lesion pixels. In addition, CLS induced 
non-visible spectral changes may occur that are not con-
sidered in human annotation and are also overrepre-
sented in early stages of infection. Possible non-visible 
symptoms around the lesions prohibited human-driven 
post-processing steps such as mask closure applied to the 
diseased class. An increased performance of the CNN 
on more advanced infection stages is expected. In addi-
tion, an increased number of repetitions, apart from a 
proof-of-concept trial, which consequently enlarges the 
training dataset, will result in a reduced standard devia-
tion of the disease severity estimation and presumably 
an improvement of the CNN performance as well. Addi-
tionally, the not adjustable spatial binning of the HC 
reduced the resolution from 1920*1080px to 640*480px 
of the hyperspectral image which consequently reduces 
possible precision of localizing symptoms in the spatial 
dimension. Furthermore, changing the pixel-by-pixel 
disease classification approach to a semantic segmenta-
tion approach by using a mask r-cnn or a U-net [67, 68] 
would focus the analysis on the spatial arrangement of 
pixels. The benefits of focusing the analysis on the spatial 
rather than the spectral information need to be tested. 
In summary, the proposed concept consists of a reliable 
pipeline for estimating the disease severity of CLS based 
on quality assured hyperspectral images under controlled 
conditions.
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Conclusion
A neural network supported analysis concept was suc-
cessfully applied to quality assured hyperspectral imag-
ing data for a phytopathological usecase. Furthermore, 
the assessment of spatial and spectral accuracy of an 
HSI-system by the proposed pipeline supports deci-
sion making for the selection of the right HSI-system 
for the required application. Furthermore, internal sig-
nal processing, such as spatial or spectral binning, can 
be evaluated and adjusted for the desired hyperspectral 
image quality. Illumination for HSI in coherence with 
real radiometric correction rather than simple normali-
zation is still complex, especially for the measurement 
of 3D objects. The results confirm the importance of dif-
fuse and uniform illumination for HSI. If the results of 
the spectral accuracy assessment and the illumination 
testing are compared, the effect on the spectral response 
of measuring 3-dimensional objects which are based on 
two-dimensional normalization is presented. For physi-
cally accurate radiometric correction of 3D measured 
objects the light distribution in the z-axis must be con-
sidered. Quality assured hyperspectral images can reduce 
limitations in the data analysis and provide high qual-
ity data sets for plant phenotyping. The presented con-
cept for CNN supported CLS disease severity estimation 
based on hyperspectral images was successfully imple-
mented. Furthermore, reducing spatial binning for pixel-
by-pixel classifications, or switching the approach to a 
semantic segmentation classifications by using a Mask 
R-CNN or U-Net instead of a 1-dimensional spectral 
response focused CNN can enhance the performance.

In conclusion, the quality assurance pipeline is inde-
pendent concerning the type of the HSI-system because 
it is data based, analysing the resulting hyperspectral 
image. Therefore, it can be easily applied on any other 
HSI-system to assess and assure the presented quality 
parameters.
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